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What 1s Frustration?

Antiferromagnetic Ising model Antiferromagnetic spin-1/2 Heisenberg model
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Geometric frustration Quantum frustration
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Our focus: Frustration-free qguantum systems



Frustration-free quantum systems

A Hamiltonian is called frustration-free (FF) iff there exist a decomposition of the Hamiltonian

A-S" 1
)
and a ground state |GS) s.t.

+ Eachterm H; is a local operator.

. The ground state |GS) minimizes all local terms simultaneously.

Examples:
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Preliminary: gapped and gapless quantum Hamiltonians

L : Side length of the system

Energy Gapless Gapped

L — o
T

Lo

€L : Finite size gap of H;

€7, — const.

er — 0

(We ignore subtleties about ground state degeneracy in this presentation)
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Why gapless FF systems are interesting?

Historically, FF systems have provided many pivotal toy models for gapped quantum phases.

AKLT model Toric code

OO &

Symmetry protected topological phase Topological order

For gapped quantum phases, frustration-freeness is an artificial condition for theoretical
tractability.

However, for gapless systems, frustration-freeness has an impact on their universal properties!
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Prior works

« Conformal quantum critical points C gapless FF systems

Ardonne et al., Ann. Phys. (Amsterdam) 310, 493 (2004).
Isakov et al., PRB 83, 125114 (2011).

« Nambu-Goldstone modes in FF systems C gapless FF systems

Ogunnaike, Feldmeier, Lee, PRL 131, 220403 (2023).
Ren, Wang, Fang, PRB 110, 245101 (2024).

» Studies of concrete models C gapless FF systems

Chen, Fradkin, Witczak-Krempa, J. Phys. A 50 464002 (2017).
Kumer et al, Sci. Rep. 11 1004 (2021).

Tantivasadakarn et al., SciPost Phys. 14, 012 (2023)

Saito, Hotta, PRL 132, 166701 (2024).

There have been many observations of nontrivial dynamical exponents in various gapless FF
systems!



Definition of dynamical exponent 2

Energy Gapless

L — o0
N —_—)
[

Typical gapless systems — 2z = 1

(conformal field theory, fermi liquid)
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Example

Kumer et al, Sci. Rep. 11 1004 (2021).
Tantivasadakarn et al., SciPost Phys. 14, 012 (2023)

FIIsing H = CVI{O =+ (1 — CV)[_—ISPT + hHIsing

z=1 O = L
HSPT — Z Zz—leZz
trivial SPT i=1
L
A y— ]_ A H — Z Z Z
HO HSPT Ising 14141
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Two Conjectures RM. Soejima, Watanabe, PRB 110, 195140 (2024).

Definition of dynamical exponent 2 : Related dispersion relation: wy ~ k~
Energy
- 1 Linear dispersion FF
_ ‘L™ T
e \/ \/
> >
Typical gapless systems — z =1 z=1 z > 2

Conjecture 1 Conjecture 2

For gapless FF systems, dynamical Low-energy excitations of gapless FF
exponent satisfies z > 2 systems exhibit wi ~ k* with z > 2
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Our contributions

1. We first formulate unified conjectures on gapless FF systems.
RM, Soejima, Watanabe, PRB 110, 195140 (2024).

2. We prove them in several settings, including spin-1/2 models and free fermions.

RM, Soejima, Watanabe, PRB 110, 195140 (2024).
RM, S. Ono, Po, Watanabe, arXiv:2503.12879 (2025).
Ono, RM, Watanabe, Po, arXiv:2503.14312 (2025).

3. Assuming power-law correlations, we proved the first conjecture.
RM, Soejima, Watanabe, PRX 15, 041050 (2025).

4. We apply our results to classical stochastic processes, proving a long-standing empirical fact.

RM, Soejima, Watanabe, PRX 15, 041050 (2025).
RM, Soejima, Watanabe, J. Stat. Phys. 192, 76 (2025).
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1. Unlfled COnJeCture RM, Soejima, Watanabe, PRB 110, 195140 (2024).

« Conformal quantum critical points
Ardonne et al., Ann. Phys. (Amsterdam) 310, 493 (2004). . Local oap threshold in EF systems

Isakov et al., PRB 83, 125114 (2011).
: Gosset, Mozgunov. J. Math. Phys. (N. Y.) 57, 091901 (2016).
« Nambu-Goldstone modes in FF systems Anshu. PRB 101. 165104 (2020).

Ogunnaike, Feldmeier, Lee, PRL 131, 220403 (2023). Lemm. Xiang, J. Ps. A 55. 295203 (2022).
Ren, Wang, Fang, PRB 110, 245101 (2024). ' ' '

. Studies of concrete models » Correlation vs gap in FF systems

Chen, Fradkin, Witczak-Krempa, J. Phys. A 50 464002 (2017). Gosset, Huang, PRL 116, 097202 (2016).

Kumer et al, Sci. Rep. 11 1004 (2021).
Tantivasadakarn et al., SciPost Phys. 14, 012 (2023)
Saito, Hotta, PRL 132, 166701 (2024).

Unifying picture has remained absent!

Conjecture 1 Conjecture 2

For gapless FF systems, dynamical Low-energy excitations of gapless FF
exponent satisfies z > 2 systems exhibit wi ~ k% with z > 2
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2-A. FI'UStrathn-free Spln mOdels RM, Soejima, Watanabe, PRB 110, 195140 (2024).

We provided a general proof of our conjectures for any spin-1/2 models with nearest-neighbor
interactions defined on hypercubic lattices, by using

s SR T G

R S S

» Classification of FF spin-1/2 chains with nearest-neighbor interactions. Ak ¥ X
Brawyi, Gosset, J. Math. Phys. 56, 061902 (2015). TS S

A A

Standard forms:  H, .y oc (MTIE% M) T (NI, )

S A 2 Az NZ
}AI . l" CSZB'_SQ:—I—l h.c. ‘C‘ Sy T Sri1
R 1+ ¢ 1+]¢2
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RM, S. Ono, Po, Watanabe, arXiv:2503.12879 (2025).

2-B. Frustration-free free fermion Ono, RM, Watanabe, Po, arXiv:2503.14312 (2025).

» We established a general framework of frustration-free free fermion systems and derived a
necessary and sufficient condition for frustration-freeness.

\ X ) X o o
{wROM qb;{/ﬁ} =0, Hpr= Z Uoz"vb;zawRa T Z V6¢Rﬁ¢;w-
@ B

 Using this framework, we have shown our conjectures.

FF Frustrated
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3. Rigorous bound on dynamical exponent

Theorem. RM, Soejima, Watanabe, PRX 15, 041050 (2025).
FF systems satisfy z = 2 if their ground states exhibit power-law decaying

correlation functions.

Our argument is highly general because we do not assume

» boundary condition
 spatial dimension

o structure of the lattice
e bosonic or fermionic

Our proof is based on the Gosset-Huang inequality. Gosset, Huang, PRL 116, 097202 (2016).

(¥]0(1 — &)0'|w)] D(0,0") —1 e
- - < 2exp | — 2 \/ >
[Of |w)[]07| W) 1 gt

We also extended this inequality to expand its applicability.
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4. Application to stochastic processes

We apply our proof of z > 2 to stochastic processes, using an established mapping
from Markov processes with detailed balance to FF quantum systems.

Henley, J. Phys. Condens. Matter 16, S891 (2004).
Castelnovo, Chamon, Mudry, Pujol, Ann. Phys. (Amsterdam) 318, 316 (2005).

d dim. :
Canonical . Ground state
distribution mapping
d+ 1 >
dim. | Markov process FF Hamiltonian

Theorem. RM, Soejima, Watanabe, PRX 15, 041050 (2025).

Dynamical exponents of local Markov processes with detailed balance relaxing to
critical equilibrium states satisfy z = 2.



EXample: kinetic ISing m()del RM, Soejima, Watanabe, J. Stat. Phys. 192, 76 (2025).

1
sing model: Peq(0) = 76_6613(0)7 E(o) = — ZWUJ’
\ (09

Temperature is fixed to the critical value

Construction of dynamics:

dp(o) ,
 Markov process s ; Woop(o)

+ Detailed balance Wo/peq(0') = WogPeq (o)

o Locality (single spin flip)
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Critical slowing down at critical S T ~ T :relaxation time, L : linear system size

Numerical value of dynamical exponent: z = 2.1667(5) = 2 Nightingale, Bldte, PRB 62, 1089 (2000

: . > 7/4 Halperin, PRB 8, 4437 (1973).
Prebious bound: - / Lubetzky, Sly, Commun. Math. Phys. 313, 815 (2012).



Numerical values of z for several universality classes

Equilibrium states dynamical exponent z
Classical Ising (2D) 2.1667(5) > 2
Classical Ising (3D) 2.0245(15) > 2
Classical Heisenberg (3D) 2.033(5) > 2
Three-state Potts (2D) 2.193(5) > 2

Four-state Potts (2D) 2.296(5)> 2




Implication of our result

No-go theorem for Markov chain Monte Carlo (MCMC) algorithms

Under the assumptions of detailed balance and local state updates, one can never
achieve z < 2.

There has been a long-standing effort to develop faster MCMC algorithms, focusing

on nonlocality or breaking detailed balance.
B B
<

Swendsen, Wang, PRL 58, 86 (1987).

Wolff, PRL 62, 361 (1989).

Suwa, Todo, PRL 105, 120603 (2010).

Turitsyn et al., Physica D (Amsterdam) 240D, 410 (2011).

e.g. Wolff cluster algorithm — 2z =~ 0.3 < 2

Our no-go theorem provides a rigorous foundation for these works!
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Summary

« We first formulate unified conjectures on universal propeties of gapless FF systems.
» We provide several highly general proofs of our conjectures. (Still there is no complete proof)

« We found application of our results to classical stochastic systems.

Future course

» Refinement of proof

» Other universal properties of gapless FF systems

- RM, arXiv:2511.16496 (2025).
Entanglement? Spatial conformal invariance?
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